Developmental changes in the cochlear hair cell mechanotransducer channel and their regulation by transmembrane channel–like proteins

نویسندگان

  • Kyunghee X. Kim
  • Robert Fettiplace
چکیده

Vibration of the stereociliary bundles activates calcium-permeable mechanotransducer (MT) channels to initiate sound detection in cochlear hair cells. Different regions of the cochlea respond preferentially to different acoustic frequencies, with variation in the unitary conductance of the MT channels contributing to this tonotopic organization. Although the molecular identity of the MT channel remains uncertain, two members of the transmembrane channel-like family, Tmc1 and Tmc2, are crucial to hair cell mechanotransduction. We measured MT channel current amplitude and Ca(2+) permeability along the cochlea's longitudinal (tonotopic) axis during postnatal development of wild-type mice and mice lacking Tmc1 (Tmc1-/-) or Tmc2 (Tmc2-/-). In wild-type mice older than postnatal day (P) 4, MT current amplitude increased ~1.5-fold from cochlear apex to base in outer hair cells (OHCs) but showed little change in inner hair cells (IHCs), a pattern apparent in mutant mice during the first postnatal week. After P7, the OHC MT current in Tmc1-/- (dn) mice declined to zero, consistent with their deafness phenotype. In wild-type mice before P6, the relative Ca(2+) permeability, P(Ca), of the OHC MT channel decreased from cochlear apex to base. This gradient in P(Ca) was not apparent in IHCs and disappeared after P7 in OHCs. In Tmc1-/- mice, P(Ca) in basal OHCs was larger than that in wild-type mice (to equal that of apical OHCs), whereas in Tmc2-/-, P(Ca) in apical and basal OHCs and IHCs was decreased compared with that in wild-type mice. We postulate that differences in Ca(2+) permeability reflect different subunit compositions of the MT channel determined by expression of Tmc1 and Tmc2, with the latter conferring higher P(Ca) in IHCs and immature apical OHCs. Changes in P(Ca) with maturation are consistent with a developmental decrease in abundance of Tmc2 in OHCs but not in IHCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of transmembrane channel–like proteins in the operation of hair cell mechanotransducer channels

Sound stimuli elicit movement of the stereocilia that make up the hair bundle of cochlear hair cells, putting tension on the tip links connecting the stereocilia and thereby opening mechanotransducer (MT) channels. Tmc1 and Tmc2, two members of the transmembrane channel-like family, are necessary for mechanotransduction. To assess their precise role, we recorded MT currents elicited by hair bun...

متن کامل

Conductance and block of hair-cell mechanotransducer channels in transmembrane channel–like protein mutants

Transmembrane channel-like (TMC) proteins TMC1 and TMC2 are crucial to the function of the mechanotransducer (MT) channel of inner ear hair cells, but their precise function has been controversial. To provide more insight, we characterized single MT channels in cochlear hair cells from wild-type mice and mice with mutations in Tmc1, Tmc2, or both. Channels were recorded in whole-cell mode after...

متن کامل

Subunit determination of the conductance of hair-cell mechanotransducer channels.

Cochlear hair cells convert sound stimuli into electrical signals by gating of mechanically sensitive ion channels in their stereociliary (hair) bundle. The molecular identity of this ion channel is still unclear, but its properties are modulated by accessory proteins. Two such proteins are transmembrane channel-like protein isoform 1 (TMC1) and tetraspan membrane protein of hair cell stereocil...

متن کامل

The effects of Tmc1 Beethoven mutation on mechanotransducer channel function in cochlear hair cells.

Sound stimuli are converted into electrical signals via gating of mechano-electrical transducer (MT) channels in the hair cell stereociliary bundle. The molecular composition of the MT channel is still not fully established, although transmembrane channel-like protein isoform 1 (TMC1) may be one component. We found that in outer hair cells of Beethoven mice containing a M412K point mutation in ...

متن کامل

Cochlear amplification, outer hair cells and prestin.

Mechanical amplification of acoustic signals is apparently a common feature of vertebrate auditory organs. In non-mammalian vertebrates amplification is produced by stereociliary processes, related to the mechanotransducer channel complex and probably to the phenomenon of fast adaptation. The extended frequency range of the mammalian cochlea has probably co-evolved with a novel hair cell type, ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 141  شماره 

صفحات  -

تاریخ انتشار 2013